Improved Branch and Bound Algorithms for Max-2-SAT and Weighted Max-2-SAT

نویسنده

  • Jordi Planes
چکیده

We present novel branch and bound algorithms for solving Max-SAT and weighted Max-SAT, and provide experimental evidence that outperform the algorithm of Borchers & Furman on Max-2-SAT and weighted Max-2-SAT instances. Our algorithms decrease the time needed to solve an instance, as well as the number of backtracks, up to two orders of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient solver for weighted Max-SAT

We present a new branch and bound algorithm for weighted Max-SAT, called 1 Lazy which incorporates original data structures and inference rules, as well as a lower 2 bound of better quality. We provide experimental evidence that our solver is very competi3 tive and outperforms some of the best performing Max-SAT and weighted Max-SAT solvers 4 on a wide range of instances. 5

متن کامل

Improved Exact Solvers for Weighted Max-SAT

We present two new branch and bound weighted Max-SAT solvers (Lazy and Lazy) which incorporate original data structures and inference rules, and a lower bound of better quality.

متن کامل

Modeling and Solving Semiring Constraint Satisfaction Problems by Transformation to Weighted Semiring Max-SAT

We present a variant of the Weighted Maximum Satisfiability Problem (Weighted Max-SAT), which is a modeling of the Semiring Constraint Satisfaction framework. We show how to encode a Semiring Constraint Satisfaction Problem (SCSP) into an instance of a propositional Weighted Max-SAT, and call the encoding Weighted Semiring Max-SAT (WS-Max-SAT). The clauses in our encoding are highly structured ...

متن کامل

Improved Bounds for Exact Counting of Satisfiability Solutions

An algorithm is presented for exactly solving (in fact, counting) the number of maximum weight satisfying assignments of a 2-SAT formula. The worst case running time of O(1.2461) for formulas with n variables improves on the previous bound of O(1.2561) by Dahllöf, Jonsson, and Wahlström. The weighted 2-SAT counting algorithm can be applied to obtain faster algorithms for combinatorial counting ...

متن کامل

Exact Algorithms for MAX-SAT

The maximum satisfiability problem (MAX-SAT) is stated as follows: Given a boolean formula in CNF, find a truth assignment that satisfies the maximum possible number of its clauses. MAX-SAT is MAX-SNP-complete and received much attention recently. One of the challenges posed by Alber, Gramm and Niedermeier in a recent survey paper asks: Can MAX-SAT be solved in less than 2n “steps”? Here, n is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003